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Response to Comment on “Global
Resilience of Tropical Forest and
Savanna to Critical Transitions”
Egbert H. Van Nes,1* Milena Holmgren,2 Marina Hirota,1 Marten Scheffer1

Ratajczak and Nippert note that transient states between treeless and savanna states are
more common than between savanna and forest, and suggest that this can be explained by a
slower rate of change in the intermediate conditions at drier sites. We show that probability
distributions of tree cover rather reflect the interplay between intrinsic rates of change and
perturbation regimes.

Although the concept of a stable state is a
useful abstraction, fluctuations in the en-
vironment and perturbations prevent

ecosystems from being in a stationary stable
state. Our approach to reconstruct the alterna-
tive states and their basins of attraction (1) is
based on the idea that the probability distribu-
tion of states reflects the balance of such stochas-
ticity with the tendency to return to underlying
attractors.

To illustrate this, we simulate dynamics of a
simple model with alternative stable states, sub-
ject to stochastic forcing (Fig. 1). The system tends
to be farther away from the equilibrium if its
dynamics are slower (Fig. 1B) but also if the level
of stochastic forcing is higher (Fig. 1D). Al-
though it seems plausible that the transition from
a treeless state to savanna is slow, one cannot
directly deduce that from the stability landscapes.
Also, the results from six (mostly nontropical)
studies on treeless-savanna transitions summa-
rized in table 1 of Ratajczak and Nippert (2) are
too variable to infer the suggested relationship
between rainfall and rates of change. This is not
surprising in view of the likely role of factors
such as initial tree cover, grazing, soils, and other
factors that will differ between the cases.

We do not agree that our substitution of space
for time would be problematic for reconstructing
stability landscapes. As sampled points from sat-
ellite images can be considered snapshots from
different time series, the theory, albeit original-
ly developed for time series (3), still holds. Al-
though we fully agree that there is an urgent need
for long-term research, time series are certainly
no panacea when it comes to inferring the exis-
tence of multiple attractors (4). Controlled field

experiments are better in this sense but are not
easy to realize at relevant scales of time and space.
Unraveling the stability properties and their gov-

erningmechanisms in such large complex systems
will inevitably require amultifaceted approach (5),
and the potential analysis is a modest but useful
addition to the toolbox we have.

Importantly, the frequency of intermediate
states does not imply that bistability would be
underestimated, as suggested by Ratajczak and
Nippert. As the results in Fig. 1 illustrate, rather
than a problem, slowness of transients and sto-
chasticity are actually a prerequisite for detect-
ing basins of attraction. Obviously, there is a
limit to that, in the sense that attraction basins
are no longer found if stochasticity overwhelms
the rates of return to underlying attractors. How-
ever, in such situations, the relevance of alter-
native attractors is questionable. The elegance of
the potential analysis is that the results directly
reflect the interplay between stochasticity and
determinism that shapes the dynamics of ecosys-
tems in nature. The fact that we find three distinct
modes in the frequency distributions of tropical
tree cover indicates that alternative attractors are
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Fig. 1. The effect of the speed of change and the noise level to the occurrence of transient states in a
simple bistable model. We use a stochastic version of a classical model of an exploited population (6)
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dt + !N dW, where r is the growth rate, K the carrying capacity,

c the maximum grazing rate, H the half-saturation of the Holling type II functional response,W a normally
distributed Wiener process, and the scaling factor g is used to tune the slowness of the system. To obtain
snapshots of this model in time, we drew 1000 random initial conditions (between 0 and 10) and ran the
model for 1100 steps. The first 100 steps were discarded, and after that, for each 100 steps one value was
saved. We analyzed these values using potential analysis (1, 3). The nonstochastic version of the model
can have two alternative stable states over a range of conditions (A). The red dashed line indicates the
used grazing rate. The probability density function (pdf) and the estimated potentials (3) are calculated
for (B) a slow system (g = 0.03); (C) the default conditions (g = 1; c = 2.1; H = 1; K = 10; r = 1; and ! =
0.05) [the bandwidth of the kernel distribution was twice the default value (3) to get a continuous
potential]; and (D) a highly stochastic system ! = 0.2.
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sufficiently pronounced to dominate dynamics de-
spite stochasticity and slow transients.
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